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DIFFUSIONAL MASS TRANSFER IN LIQUID MIXTURES 

S. G. D'yakonov, D. V. Proshchekal'nikov, G. S. D'yakonov, 
and R. A. Ibragimov 

UDC 532.72 

The general form of the equations for determining the flow relations in liquid 
mixtures is obtained. A closed calculation algorithm and an experimental meth- 
od of holographic interferometry are developed for the identification of the 
binary-diffusion coefficients. A ternary mixture is investigated by the meth- 
od of molecular dynamics. 

Equation for Determining Flow Relations in Liquid Mixtures 

It is known that any closed nonequi!ibrium macroscopic system passes to a state of 
statistical equilibrium in the course of its relaxation time. This state of the system 
is described by an N=particle Gibbs distribution function [i]. For the large canonical 
ensemble of a v-component system, it takes the form 

~ i 

where A is a normalization factor; ~, N~ are the chemical potential and number of particles 
of component ~. 

However, in practice, it is necessary to consider the system through times comparable 
with, or even less than, the relaxation time. In this case, its description may be con- 
structed, as suggested in [2], by reducing the number of parameters characterizing the 
nonequilibrium macrosystem in the course of relaxation. 
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Analyzing the structure of the function F0 N, it may be asserted that the nonequilib- 
rium distribution function F N will depend on dynamic variables in the form of the molecular 
velocities and coordinates, as well as a series of macroscopic functions characterizing 
the nonequilibrium state. In isobarically isothermal conditions, such functions are the 
diffusional velocities V= and the chemical potentials of the components Da. This allows 
the function F N for the v-component system to be written in parametric form 

FN= F u(v~i, r~i, V=, ~=, T), 

where r~i, vai are the position and velocity of particle i of type ~. 

According to the principle of local equilibrium, the function F N may be expanded in 
series in terms of Hermitian polynomials [3], retaining only the first term of the expan- 
sion 

FN= 1+ Z a = ~ v = i  + Z ~ a h Z  
a = l  i = l  o~,i ~,i  h , l  

~ Fo "v. 
Ov~iOv~i 

Satisfying the basic integral relations of the form 

~ v~iF N dNvdN r = V~, 

tn~v~iF N d'VvdN r = 3KT, 

it is found that as =--V= and hence 

F N = F  N 1-}- Z ~]-~--v=lV~ �9 
~ = 1  i = 1  

(1) 

The further construction of the theory involves representing the nonequilibrium system 
in the form of a hierarchical structure of two characteristic scales. These correspond to 
the processes of thermal motion of the molecules, with velocity v=i and interaction time 
Tc, and relaxation of the macroscopic fields V~ with characteristic time T r (v~i>>V~, 
T c < Tr). Analysis of this structure is possible within the framework of the method of 
conjugate physical and mathematical modeling. The basic idea is that the relation between 
the schemes in the hierarchical system is parametric, and the parameters may be calculated 
by satisfying the fundamental conservation laws [4]. In the given case, this conservation 
law is the fundamental Liouville equation [i]. 

The irreversibility of diffusion [5] may be taken into account here by averaging the 
dynamic scale functions vai over the time interval of pair interaction ~c" Substituting 
the function of Eq. (i) into the Liouville equation, it is found, taking account of irre- 

versibility, that 

~.~ ~ v~v~- -m~v~V~ = O, (2) 
~ = 1  i = 1  

where it is taken into account that 

0 ~  << v~V~=, 
Ox 

av~ (3)  
v~,~ Ox << v~V~. 

Estimating the chemical potential ~ = ~ 0 + KTInX~, where ~ 0 is the chemical poten- 
tial of the pure liquid, X~ is the mole fraction of component ~, and ~=i~v=t OV a ~ V= 

it is, simple to prove Eq. (3). ~c 0T T r 
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Multiplying Eq. (2) by the momentum of particle i of type ~ at time z = 0 and averag- 
ing it over the ensemble, the final system of equations is found 

v 
%c 

v~.i - -  

-- N~ (P~i (0)'P~j ( J  > 0 ( V ~ - - V ~ ) =  0; c r  1 . . .% ( 4 )  

where the relation 

1: o 

i s  u s e d ,  s i n c e  t h e  s y s t e m  may be r e g a r d e d  a s  c l o s e d  i n  t h e  c o u r s e  o f  t i m e  T c .  

T h u s ,  w i t h i n  t h e  f r a m e w o r k  o f  t h e  m e t h o d  o f  c o n j u g a t e  p h y s i c a l  and  m a t h e m a t i c a l  m o d e l -  
i n g ,  t h e  g e n e r a l  f o r m  o f  t h e  b a s i c  e q u a t i o n s  f o r  d e t e r m i n i n g  some r e l a t i o n s  i n  l i q u i d  m i x -  
t u r e s  may be o b t a i n e d .  The c o u p l i n g  p a r a m e t e r s  o f  t h e  s c a l e s  vc, and  V~ a r e  t h e  momentum 
and  f o r c e  c o r r e l a t i o n  f u n c t i o n  (MFCF) 

Tr 

�9 ~c 1 !. p~ (t + % ) - -  P~i (t) dr, < p~,(0)b~;(~)> 0 -  l i r a - -  p~,~(t) (5 )  
r r ~  Tr 6 Tc 

and the mutal velocity correlation function (MVCF) averaged over time interval T c 

~c 1 ~r 1 ~c 
< v=/(O) va./(J > 0-= lira - - -  ~ i' v~,i(t)v,<j(t + J d ~ d t .  

Tr "~ T r  6 Tc 6 
6) 

The system in Eq. 
solid spheres). 
the relations 

(4) may be significantly simplified for small T c + 0 (model system of 
Estimating the terms of the first and second sums in Eq. (4) and using 

;% KT p~j 
Ve, --~ -- " Df,,V~; De, ~-- -- Tpa; p~j ~ 

KT ' m~ *c 

w h e r e  ~pa i s  t h e  " f r e e "  p a t h  t i m e ,  i t  may be f o u n d  t h a t  as  "re § 0 

[C ~C 

m~ ( v ~  (0) v~j (T) > oW~ < ( p~; (0) p~ (~) > oVa, 

which is equivalent to the inequality 

"< << *pa. (7) 
Although these inequalities are of model type, they may be valid for real liquids 

in which the molecular interaction is determined basically by the repulsive forces. A 
system of equations of simpler form may be used to investigate such media 

T C 

3KTv~,c~ - -  ~ N~ < p~  (0) p~j (~) )o  (V~ - -  V~) = 0. ( 8 )  

I n  a d d i t i o n ,  i n  t h e  c a s e  o f  a m o d e l  s y s t e m  o f  s o l i d  s p h e r e s ,  an a n a l y t i c a l  s o l u t i o n  may be 
o b t a i n e d  f o r  t h e  f l o w  r e l a t i o n  j ~ .  I n  t h e  b i n a r y  c o l l i s i o n  o f  two s p h e r e s  w i t h  d i a m e t e r s  
a~ and  oB, t h e  v a r i a t i o n  i n  momentum o c c u r s  a l o n g  t h e  l i n e  c o n n e c t i n g  t h e i r  c e n t e r s ,  i n  
the direction of the unit vector e: 

On passing to the center-of-mass system of the colliding molecules, averaging over the 
two-particle distribution function 
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F (~)~ = (~a~/2#KT) 3/2 exp [--bt~v~td2KT l g~ (r~ - -  r~)lV 
gives the following expression for the MFCF 

__ 2 0 lira <P~a Ap~ \ _ (2KT)a/2 (~t~,~/#)~/~ 4~o~g~n, 
.~c~O .1Jc / 0  (9) 

where oa~ = (I/2)(o~ + o$); n is the numerical density of the mixture; V~ is the reduced 

mass; v=~ = v=~vsi, g~ is the radial function at the contact point of the spheres. This 

function may be obtained from the solution of the Percus-Yevick integral equations [6, 7] 

gO = (6og~, + a~,gag)126~o, 

[ )]/ " 
= i = 1  

In  t h i s  c a s e ,  t h e  s o l u t i o n  o f  Eq. (8 )  f o r  a b i n a r y  m i x t u r e  in  t h e  mean-mass c o o r d i n a t e  
system determined by the coupling equation 

v 

~_~ (n~m~/9) V~ = 0 

(lO) 

will take the form 

1~= n~ ( KT )1/2 1 
KT D~av~a' D~a = 3  ~ 2 0 ( 1 1 )  2~b~ 8 n ~ g ~  

Note  a l s o  t h a t  in  t h e  l i m i t i n g  c a s e ,  f o r  a s y s t e m  o f  r a r e f i e d  g a s e s ,  Eqs.  (8 )  w i t h  
a c c o u n t  o f  Eq. (9 )  and a l s o  t h e  r e l a t i o n  ~a = Da ~ + K T l n ( n J n )  t r a n s f o r m  t o  t h e  w e l l -  
known S t e f an -~4axwe l l  e q u a t i o n s  [7] 

v na'S 1 
= Z n2 t v 0 -  

where  D ~  t a k e s  t h e  form in  Eq. ( 1 1 ) .  

E x p e r i m e n t a l  I n v e s t i g a t i o n  o f  D i f f u s i o n  in  M u l t i c o m p o n e n t  M i x t u r e s  

The r e g i o n  o f  a p p l i c a b i l i t y  o f  Eq. (11)  t o  a r e a l  s y s t e m  i s  c o n f i n e d  t o  a r e d u c e d -  

d e n s i t y  v a l u e  O0 = r  = 1 .5  [ 8 ] ,  a t  which  t h e r e  i s  p h a s e  t r a n s i t i o n  t o  a model  s y s t em 
of solid spheres. However, for binary systems, the contribution of attractive forces to 
the radial function ga 0 may be taken into account. The most universal approach here 
entails investigating the equation of state of solid spheres [6], with the introduction 
of a term taking account of the contribution of attractive forces to the pressure f(V) 

P+[(tO n K T ( I +  2 v v 03 0 )  = ~ n Z  ZX~X~ ~z~g~ �9 
3 

Then Enskog relation [9] may be obtained for ga~ - the radial function of the component 
at infinite dilution (X$ + 0) in Eq. (i0) 

Thus, using Eqs. (10)-(12), D~ may be determined. The derivative (SP/ST) V is determined 
here from the equation of state of a pure liquid. For example, the Lee-Kessler equation 
of state [I0] ensures a mean error of less than 2% in calculating the thermodynamic 
properties of hydrocarbons at reduced temperatures of 0.3-4.0 and reduced pressures of 
0-i0 for the vapor and liquid phases. 

For sufficiently dense systems P0 = 1.5, the Eiring equation is most often used as 
the equation of state [i0] 
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Fig. i. Concentration dependence of the binary-diffusion coefficient 
Dl2(.109 m2/sec) at T = 298 K: a) theory; 2) experiment; a) the sys- 
tem C6HI~-CC14, calculation by the Eiring equation; b) the system 
C2HsOH-H20 , calculation by the Lee-Kessler equation. 

P -" V~a - n K T  1 §  , -f- 

Comparison of the numerical values of g~ 0 obtained from Eq. (i0) with those cal- 
culated from the Eiring and Lee-Kessler equations of state gives a difference within 
limits of 30%. This is the basis for application of a version of perturbation theory in 
constructing the concentration dependence of the binary-diffusion coefficient. To test 
this hypothesis, calculations and experimental investigations of the dependence of Dl2 on 
the composition X I are undertaken. The method of holographic interferometry is used in 
the experiment. The optical scheme of the real-time holographic interferometer corres- 
ponds to the Mach-Zehnder scheme. In the course of the experiment, one-dimensional non- 
steady diffusion is organized within a diffusional cell in the form of a narrow plane- 
parallel parallelepiped. The procedure for deriving the diffusion coefficients is based 
on numerical integration, in the course of which moments of four orders of the interfer- 
ence-band shift function are established. 

The basic advantage of the measurement method is its relative simplicity, both in 
terms of realization and in the volume of calculations required. In the course of the 
experiment, weak sensitivity to the form of the initial concentration profile is discov- 
ered; this is of fundamental importance. The measurement error, according to estimates, 
is no more than 5%. 

The results of calculating Dl2 from Eqs. (10)-(12) for the binary systems C6H14-CC14, 
C2HsOH-H20 at T = 298 K are shown in Fig. i, together with experimental data obtained by 
holographic interferometry. As is evident from Fig. i, the use of the Lee-Kessler and 
Eiring equations of state gives the best agreement with experiment, within limits of 20%. 

with the aim of verifying the fundamental principles of the theory, a numerical ex- 
periment on the investigation of the three-component Lennard-Jones mixture Alimadad 
(acetone-benzene-methanol) by the method of equilibrium molecular dynamics is developed 
and undertaken. The matrix elements of multicomponent diffusion D~ are calculated on 
the basis of solution of Eq. (4) in the mean-mass coordinate system. The functions in 
Eqs. (5) and (6) are determined experimentally. The results for D~$ are compared with 
the transfer coefficients obtained earlier by the method of nonequilibrium molecular 
dynamics (NEMD) [ii]. 

The total number of particles modeled is chosen to be N = 256; the integration step 
At = 10 -14 sec. The number of steps in the thermalization procedure NK = 400 completely 
ensures stability of the temperature T = 300 + 15 K over the whole time interval t r = i0 -z~ 
sec of accumulation of the statistics. With the aim of reducing the velocity fluctuations 
of the molecules, the integration of the equations of motion is by the Moulton-Adams scheme 
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Fig. 2. Dependence of MFCF ( ' l O  ss N2"sec) on T ('i014 sec) for the system 
acetone-benzene-methanol when T = 300 K, X, = 0.4, X 2 = 0.5; a) curves of 
<pl(O)l~2(x)>o (I), <p,(0)~2(T)>o (2), and <P2(O)I)S(T)>O (3); b) T c = i0 -Is (i), 
2"i0 -Is (2), and 3"10 -Is (3) sec. 

/ p  AP~i \ 
Fig. 3. Dependence of the function \ ~'~ ~c / o  ('10 ss N2"sec) on the 
averaging time Zc ('1014 sec) for the acetone-benzene-methanol system when 
r = 300 K, X I = 0.4, X 2 = 0.5; i) (pl AP~\0' 2) Ipl AP3>; 3) (p~ aP~)o �9 

"~c / ' Tc Tc 

At 

24m~ 
9.71~(n-2) 9F(]-s)], [55F~' ~ 59F(~ - l )  + ~..~, - -  

.(.+I) r(~.) At - -  (n) v.n . (n- - l )  . (n--2) Q. (n--3h = + 37-~i 

where F~ ) is the Lennard-Jones force acting on molecule i of type ~ from its nearest 
neighbor. 

Calculation of the function <p=~(0)p~#(x))0 by the formula 

N D 

m=________~__~ us(t k + ~ + At) - -  u~ (th) ( 1 3 )  
< p~(o)~,~j(-O >o= Np ~ u~ (t,,) At ' 

h=[ 

where At is the integration step, clearly demonstrates the meaning of the pair-interaction 
time in the liquid. 

Graphs of the function in Eq. (13) for the mixture acetone(1)-benzene(2)-methanol(3) 
when T = 300 K, X I = 0.4, X 2 = 0.5 (Fig. 2a) have a clearly expressed peak directly charac- 
terizing the interaction of the molecules a and 6. The width of this peak also determines 

T C �9 

When T > Zc, the behavior of Eq. (13) is fluctuational in character. To identify 
the irreversible parameters in Eq. (5) determining the velocity v= in Eqs. (4) and (8), 
it is expedient to consider the evolution of the following function in terms of ~c 

T c Np 
(P~i(O) P ~ j ( X ) ) o - -  m~mB X u ~ ( t h )  . . . .  u~(t~ + z +  % ) - - u ~ ( t ~ )  

Np k= I ~o 

Nc6 
Z V~zi 

tl~ = Atk, u~ = (14) 
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TABLE i. Results of Numerical Modeling of Acetone-Benzene- 

Methanol Mixture 

E~ilibri~ ~thod 
Co~osition (.10 s m2.sec) 

x~ x~ Dt~ Dl~ D~ 

0,35 0,3 2,92  --0,8 --0,6 
0,4 0,5 2 , 7 3  --1,1 --0,6 
0,2 0,55 2,7 --0,6 --0,3 
0,55 0,19 3,2 --0,2" --0,3 

D~ 

1,95 
2,46 
1,35 
1,9 

None~uilibrium method 
('lO ~ m~'sec) 

2,84 
2,7 
2,62 
3,06 

--0,52 I --0,36 
--0,74 --0,31 
--0,42 --0,12 
--0,16 --0,44 

D~'~ 

2,27 
2,1 
1,65 
2,48 

Graphs of this function for various T c in the case of the given mixture with ~ = I, ~ = 2, 
X i = 0.4, X 2 = 0.5 are shown in Fig. 2b. "Deformation" with increase in ~c appears here 
in the motion of the maximmn of the basic peak to the left, with decrease and complete 

disappearance at T c greater than some critical value ~c > ~cr- 

Such behavior of the curves of Eq. (14) forms the basis for determining the parameters 
in Eq. (5) which do not depend on the time T c. Determining the parameters in Eq. (5) as 
the mean of the function in Eq. (14) with respect to ~ in the time interval [0, ~max] for 
fixed T c is the clearest example confirming the initial principles of the method of con- 
jugate physical and mathematical modeling. In the case where ~c > Tcr, their values are 

determined when ~ = 0. The corresponding graph of this function <p~iAP~>0 has a clearly 

expressed plateau (Fig. 3). The width of this section A~ = 2"10 -13 sec, which is an order 
of magnitude greater than the integration step and indicates the correctness of the above 

determination. 

The results of modeling an acetone-benzene-methanol mixture in Table 1 indicate good 
agreement of the diagonal matrix elements obtained by two different methods. The relative- 
ly large spread (~60%) with respect to the nondiagonal elements may be explained by the 
incorrect use of the thermocompensation procedure in the NEMD method. 

The error of the numerical experiment obtained from the maximum spread of the func- 

tion <p~iAP~ )0 on the plateau (Fig. 3) is no more than 20%. The MVCF, which is cal- 

culated from the formula 

< v~a (0)  v s j  ('~) > o - - -  
1 ~ I Jvk 

,v,, ,'.' -W7 k= 1 l =  l 

has the character of a correction, and has a weak influence on the experimental accuracy 
(within limits of 5-10%). 

NOTATION 

D, chemical potential of the molecules of the component; v= diffusional velocity 
of the molecules of the component ~; .= mean velocity of the molecules of the component 
a; v~ dynamic velocity of particle i of component ~; r~ radius vector of particle i 
of type ~ in the laboratory coordinate system; ge~, radial distribution function; F N, non- 
equilibrium distribution function; F0 N, locally equilibrium distribution function; F~$(2), 

two-particle distribution function; ~c, pair-interaction time; T, current microscopic time; 
Tpa, free path time for model system of solid spheres; Tmax, time of a maximum of <p~i(0) 

p~](~)>0, ~cr, time of disappearance of the basic peak of the function <p~AP~/> 0 on aver- 
%c 

aging with respect to T; m~, mass of particle type ~; ~, reduced mass; o~, diameter of 
molecule of type ~ in model system of solid spheres; V, volume of system; X~, mole frac- 
tion of component ~; n~, numerical density of component ~; n, numerical density of mixture; 
D~, matrix of multicomponent diffusion coefficients; Dl2 , binary diffusion coefficient. 

I~ 

2. 
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DETERMINING THE TEMPERATURE FIELDS OF MULTILAYER SPHERICALLY 

SYMMETRIC SYSTEMS 

Yu. I. Dudarev, M. Z. Maksimov, and L. K. Nikonenko UDC 536.21 

On the basis of the WKBJ method, approximate relations are obtained for de- 
termining the nonsteady temperature field in spherically symmetric multilayer 
systems. 

In calculating the temperature fields of multilayer shells, power plants, and various 
aircraft, not only computer-based numerical methods may be successfully used, but also 
approximate analytical methods with the introduction of effective thermophysical charac- 
teristics for inhomogeneous media [1-4]. It is very expedient in this case to use the 
principles of the WKBJ method [5], which is well developed and widely used in theoretical 
physics. In thermophysical investigations, these ideas have been realized in determining 
the temperature in plane multilayer systems [6], and estimates have been made for the cylin- 
drical case [7]. 

Consider a multilayer spherically symmetric system. Its temperature field is deter- 
mined by the equations 

r~ Or -O-7-  + q" (r, t) = cv ( r ) - -  

OT - -0 ,  r - -O ,  
Or 

OT 
- - •  - - o~ (T - -Tme  ), r =  R, 

Or 

r ( ~ ,  l = o) = f i a t ) ,  

OT 

Ot 
(1) 

(2) 

(3) 

(4) 

where K, cy are the thermal conductivity and volume specific heat; qv denotes the heat 
sources; ~, Tme are the heat-transfer coefficient with the surrounding medium and its tem- 
perature; R is the radius of the system. 
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